// SPDX-FileCopyrightText: 2024 Chris Duncan <chris@zoso.dev>
// SPDX-License-Identifier: GPL-3.0-or-later
-
+//@ts-nocheck
import { Blake2b } from './blake2b.js'
+// nano-webgl-pow
+// Nano Currency Proof of Work Value generation using WebGL2
+// Author: numtel <ben@latenightsketches.com>
+// License: MIT
+
+// window.NanoWebglPow(hashHex, callback, progressCallback, threshold);
+// @param hashHex String Previous Block Hash as Hex String
+// @param callback Function Called when work value found
+// Receives single string argument, work value as hex
+// @param progressCallback Function Optional
+// Receives single argument: n, number of frames so far
+// Return true to abort
+// @param threshold Number|String Optional difficulty threshold (default=0xFFFFFFF8 since v21)
+
+(function () {
+
+ function array_hex (arr, index, length) {
+ let out = ''
+ for (let i = length - 1; i > -1; i--) {
+ out += (arr[i] > 15 ? '' : '0') + arr[i].toString(16)
+ }
+ return out
+ }
+
+ function hex_reverse (hex) {
+ let out = ''
+ for (let i = hex.length; i > 0; i -= 2) {
+ out += hex.slice(i - 2, i)
+ }
+ return out
+ }
+
+ function calculate (hashHex, callback, progressCallback, threshold = '0xFFFFFFF8') {
+ if (typeof threshold === 'number') threshold = '0x' + threshold.toString(16)
+
+ const canvas = document.createElement('canvas')
+
+ canvas.width = window.NanoWebglPow.width
+ canvas.height = window.NanoWebglPow.height
+
+ const gl = canvas.getContext('webgl2')
+
+ if (!gl)
+ throw new Error('webgl2_required')
+
+ if (!/^[A-F-a-f0-9]{64}$/.test(hashHex))
+ throw new Error('invalid_hash')
+
+ gl.clearColor(0, 0, 0, 1)
+
+ const reverseHex = hex_reverse(hashHex)
+
+ // Vertext Shader
+ const vsSource = `#version 300 es
+ precision highp float;
+ layout (location=0) in vec4 position;
+ layout (location=1) in vec2 uv;
+
+ out vec2 uv_pos;
+
+ void main() {
+ uv_pos = uv;
+ gl_Position = position;
+ }`
+
+ // Fragment shader
+ const fsSource = `#version 300 es
+ precision highp float;
+ precision highp int;
+
+ in vec2 uv_pos;
+ out vec4 fragColor;
+
+ // Random work values
+ // First 2 bytes will be overwritten by texture pixel position
+ // Second 2 bytes will be modified if the canvas size is greater than 256x256
+ uniform uvec4 u_work0;
+ // Last 4 bytes remain as generated externally
+ uniform uvec4 u_work1;
+
+ // Defined separately from uint v[32] below as the original value is required
+ // to calculate the second uint32 of the digest for threshold comparison
+ #define BLAKE2B_IV32_1 0x6A09E667u
+
+ // Both buffers represent 16 uint64s as 32 uint32s
+ // because that's what GLSL offers, just like Javascript
+
+ // Compression buffer, intialized to 2 instances of the initialization vector
+ // The following values have been modified from the BLAKE2B_IV:
+ // OUTLEN is constant 8 bytes
+ // v[0] ^= 0x01010000u ^ uint(OUTLEN);
+ // INLEN is constant 40 bytes: work value (8) + block hash (32)
+ // v[24] ^= uint(INLEN);
+ // It's always the "last" compression at this INLEN
+ // v[28] = ~v[28];
+ // v[29] = ~v[29];
+ uint v[32] = uint[32](
+ 0xF2BDC900u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
+ 0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
+ 0xADE682D1u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
+ 0xFB41BD6Bu, 0x1F83D9ABu, 0x137E2179u, 0x5BE0CD19u,
+ 0xF3BCC908u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
+ 0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
+ 0xADE682F9u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
+ 0x04BE4294u, 0xE07C2654u, 0x137E2179u, 0x5BE0CD19u
+ );
+ // Input data buffer
+ uint m[32];
+
+ // These are offsets into the input data buffer for each mixing step.
+ // They are multiplied by 2 from the original SIGMA values in
+ // the C reference implementation, which refered to uint64s.
+ const int SIGMA82[192] = int[192](
+ 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,28,20,8,16,18,30,26,12,2,24,
+ 0,4,22,14,10,6,22,16,24,0,10,4,30,26,20,28,6,12,14,2,18,8,14,18,6,2,26,
+ 24,22,28,4,12,10,20,8,0,30,16,18,0,10,14,4,8,20,30,28,2,22,24,12,16,6,
+ 26,4,24,12,20,0,22,16,6,8,26,14,10,30,28,2,18,24,10,2,30,28,26,8,20,0,
+ 14,12,6,18,4,16,22,26,22,14,28,24,2,6,18,10,0,30,8,16,12,4,20,12,30,28,
+ 18,22,6,0,16,24,4,26,14,2,8,20,10,20,4,16,8,14,12,2,10,30,22,18,28,6,24,
+ 26,0,0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,28,20,8,16,18,30,26,12,
+ 2,24,0,4,22,14,10,6
+ );
+
+ // 64-bit unsigned addition within the compression buffer
+ // Sets v[a,a+1] += b
+ // b0 is the low 32 bits of b, b1 represents the high 32 bits
+ void add_uint64 (int a, uint b0, uint b1) {
+ uint o0 = v[a] + b0;
+ uint o1 = v[a + 1] + b1;
+ if (v[a] > 0xFFFFFFFFu - b0) { // did low 32 bits overflow?
+ o1++;
+ }
+ v[a] = o0;
+ v[a + 1] = o1;
+ }
+ // Sets v[a,a+1] += v[b,b+1]
+ void add_uint64 (int a, int b) {
+ add_uint64(a, v[b], v[b+1]);
+ }
+
+ // G Mixing function
+ void B2B_G (int a, int b, int c, int d, int ix, int iy) {
+ add_uint64(a, b);
+ add_uint64(a, m[ix], m[ix + 1]);
+
+ // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
+ uint xor0 = v[d] ^ v[a];
+ uint xor1 = v[d + 1] ^ v[a + 1];
+ v[d] = xor1;
+ v[d + 1] = xor0;
+
+ add_uint64(c, d);
+
+ // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
+ xor0 = v[b] ^ v[c];
+ xor1 = v[b + 1] ^ v[c + 1];
+ v[b] = (xor0 >> 24) ^ (xor1 << 8);
+ v[b + 1] = (xor1 >> 24) ^ (xor0 << 8);
+
+ add_uint64(a, b);
+ add_uint64(a, m[iy], m[iy + 1]);
+
+ // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
+ xor0 = v[d] ^ v[a];
+ xor1 = v[d + 1] ^ v[a + 1];
+ v[d] = (xor0 >> 16) ^ (xor1 << 16);
+ v[d + 1] = (xor1 >> 16) ^ (xor0 << 16);
+
+ add_uint64(c, d);
+
+ // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
+ xor0 = v[b] ^ v[c];
+ xor1 = v[b + 1] ^ v[c + 1];
+ v[b] = (xor1 >> 31) ^ (xor0 << 1);
+ v[b + 1] = (xor0 >> 31) ^ (xor1 << 1);
+ }
+
+ void main() {
+ int i;
+ uint uv_x = uint(uv_pos.x * ${canvas.width - 1}.);
+ uint uv_y = uint(uv_pos.y * ${canvas.height - 1}.);
+ uint x_pos = uv_x % 256u;
+ uint y_pos = uv_y % 256u;
+ uint x_index = (uv_x - x_pos) / 256u;
+ uint y_index = (uv_y - y_pos) / 256u;
+
+ // First 2 work bytes are the x,y pos within the 256x256 area, the next
+ // two bytes are modified from the random generated value, XOR'd with
+ // the x,y area index of where this pixel is located
+ m[0] = (x_pos ^ (y_pos << 8) ^ ((u_work0.b ^ x_index) << 16) ^ ((u_work0.a ^ y_index) << 24));
+ // Remaining bytes are un-modified from the random generated value
+ m[1] = (u_work1.r ^ (u_work1.g << 8) ^ (u_work1.b << 16) ^ (u_work1.a << 24));
+
+ // Block hash
+ m[2] = 0x${reverseHex.slice(56, 64)}u;
+ m[3] = 0x${reverseHex.slice(48, 56)}u;
+ m[4] = 0x${reverseHex.slice(40, 48)}u;
+ m[5] = 0x${reverseHex.slice(32, 40)}u;
+ m[6] = 0x${reverseHex.slice(24, 32)}u;
+ m[7] = 0x${reverseHex.slice(16, 24)}u;
+ m[8] = 0x${reverseHex.slice(8, 16)}u;
+ m[9] = 0x${reverseHex.slice(0, 8)}u;
+
+ // twelve rounds of mixing
+ for(i=0;i<12;i++) {
+ B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1]);
+ B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3]);
+ B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5]);
+ B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7]);
+ B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9]);
+ B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11]);
+ B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13]);
+ B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15]);
+ }
+
+ // Threshold test, first 4 bytes not significant,
+ // only calculate digest of the second 4 bytes
+ if((BLAKE2B_IV32_1 ^ v[1] ^ v[17]) > ` + threshold + `u) {
+ // Success found, return pixel data so work value can be constructed
+ fragColor = vec4(
+ float(x_index + 1u)/255., // +1 to distinguish from 0 (unsuccessful) pixels
+ float(y_index + 1u)/255., // Same as previous
+ float(x_pos)/255., // Return the 2 custom bytes used in work value
+ float(y_pos)/255. // Second custom byte
+ );
+ }
+ }`
+
+ const vertexShader = gl.createShader(gl.VERTEX_SHADER)
+ gl.shaderSource(vertexShader, vsSource)
+ gl.compileShader(vertexShader)
+
+ if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS))
+ throw gl.getShaderInfoLog(vertexShader)
+
+ const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER)
+ gl.shaderSource(fragmentShader, fsSource)
+ gl.compileShader(fragmentShader)
+
+ if (!gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS))
+ throw gl.getShaderInfoLog(fragmentShader)
+
+ const program = gl.createProgram()
+ gl.attachShader(program, vertexShader)
+ gl.attachShader(program, fragmentShader)
+ gl.linkProgram(program)
+
+ if (!gl.getProgramParameter(program, gl.LINK_STATUS))
+ throw gl.getProgramInfoLog(program)
+
+ gl.useProgram(program)
+
+ // Construct simple 2D geometry
+ const triangleArray = gl.createVertexArray()
+ gl.bindVertexArray(triangleArray)
+
+ // Vertex Positions, 2 triangles
+ const positions = new Float32Array([
+ -1, -1, 0, -1, 1, 0, 1, 1, 0,
+ 1, -1, 0, 1, 1, 0, -1, -1, 0
+ ])
+ const positionBuffer = gl.createBuffer()
+ gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer)
+ gl.bufferData(gl.ARRAY_BUFFER, positions, gl.STATIC_DRAW)
+ gl.vertexAttribPointer(0, 3, gl.FLOAT, false, 0, 0)
+ gl.enableVertexAttribArray(0)
+
+ // Texture Positions
+ const uvPosArray = new Float32Array([
+ 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1
+ ])
+ const uvBuffer = gl.createBuffer()
+ gl.bindBuffer(gl.ARRAY_BUFFER, uvBuffer)
+ gl.bufferData(gl.ARRAY_BUFFER, uvPosArray, gl.STATIC_DRAW)
+ gl.vertexAttribPointer(1, 2, gl.FLOAT, false, 0, 0)
+ gl.enableVertexAttribArray(1)
+
+ const work0Location = gl.getUniformLocation(program, 'u_work0')
+ const work1Location = gl.getUniformLocation(program, 'u_work1')
+
+ // Draw output until success or progressCallback says to stop
+ const work0 = new Uint8Array(4)
+ const work1 = new Uint8Array(4)
+ let n = 0
+
+ function draw () {
+ n++
+ window.crypto.getRandomValues(work0)
+ window.crypto.getRandomValues(work1)
+
+ gl.uniform4uiv(work0Location, Array.from(work0))
+ gl.uniform4uiv(work1Location, Array.from(work1))
+
+ // Check with progressCallback every 100 frames
+ if (n % 100 === 0 && typeof progressCallback === 'function' && progressCallback(n))
+ return
+
+ gl.clear(gl.COLOR_BUFFER_BIT)
+ gl.drawArrays(gl.TRIANGLES, 0, 6)
+ const pixels = new Uint8Array(gl.drawingBufferWidth * gl.drawingBufferHeight * 4)
+ gl.readPixels(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight, gl.RGBA, gl.UNSIGNED_BYTE, pixels)
+
+ // Check the pixels for any success
+ for (let i = 0; i < pixels.length; i += 4) {
+ if (pixels[i] !== 0) {
+ // Return the work value with the custom bits
+ typeof callback === 'function' &&
+ callback(
+ array_hex(work1, 0, 4) +
+ array_hex([
+ pixels[i + 2],
+ pixels[i + 3],
+ work0[2] ^ (pixels[i] - 1),
+ work0[3] ^ (pixels[i + 1] - 1)
+ ], 0, 4), n)
+ return
+ }
+ }
+ // Nothing found yet, try again
+ window.requestAnimationFrame(draw)
+ }
+
+ // Begin generation
+ window.requestAnimationFrame(draw)
+ }
+
+ window.NanoWebglPow = calculate
+ // Both width and height must be multiple of 256, (one byte)
+ // but do not need to be the same,
+ // matching GPU capabilities is the aim
+ window.NanoWebglPow.width = 256 * 2
+ window.NanoWebglPow.height = 256 * 2
+
+})()
+
const p = () => {
const NONCE_BYTES = 8
*/
addEventListener('message', (message) => {
const data = JSON.parse(new TextDecoder().decode(message.data ?? message))
+ if (data === 'stop') close()
for (const d of data) {
d.nonce = find(d.hash, d.threshold)
+ console.log('pow found')
}
const buf = new TextEncoder().encode(JSON.stringify(data)).buffer
//@ts-expect-error
})
async function find (hash: string, threshold: string = SEND_THRESHOLD) {
- let count = 0
- let result = null
- do {
- count++
- const nonce: Uint8Array = new Uint8Array(NONCE_BYTES)
- crypto.getRandomValues(nonce)
- const test: string = new Blake2b(NONCE_BYTES)
- .update(nonce)
- .update(parseHex(hash))
- .digest('hex') as string
- if (count % 1000 === 0) console.log(`${count} hashes...`)
- if (BigInt(`0x${test}`) >= BigInt(`0x${threshold}`)) {
- result = nonce
- }
- } while (result == null)
- return result
+ return new Promise((resolve, reject) => {
+ window.NanoWebglPow(hash, resolve, console.log)
+
+ })
+ // let result = null
+ // let count = 0
+ // do {
+ // count++
+ // const nonce: Uint8Array = new Uint8Array(NONCE_BYTES)
+ // crypto.getRandomValues(nonce)
+ // const test: string = new Blake2b(NONCE_BYTES)
+ // .update(nonce)
+ // .update(parseHex(hash))
+ // .digest('hex') as string
+ // if (count % 1000 === 0) console.log(`${count} hashes...`)
+ // if (BigInt(`0x${test}`) >= BigInt(`0x${threshold}`)) {
+ // result = nonce
+ // }
+ // } while (result == null)
+ // return result
}
function parseHex (hex: string) {