// SPDX-License-Identifier: GPL-3.0-or-later
// Based on nano-webgl-pow by Ben Green (numtel) <ben@latenightsketches.com>
// https://github.com/numtel/nano-webgl-pow
+/// <reference types="@webgpu/types" />
import { WorkerInterface } from '../pool.js'
export class Pow extends WorkerInterface {
static {
Pow.listen()
}
+
/**
* Calculates proof-of-work as described by the Nano cryptocurrency protocol.
*
* @param {number} [threshold=0xfffffff8] - Difficulty of proof-of-work calculation
*/
static async find (hash: string, threshold: number = 0xfffffff8): Promise<string> {
- return new Promise<string>(resolve => {
- this.#calculate(hash, resolve, threshold)
+ return new Promise<string>(async (resolve) => {
+ await this.#calculate(hash, resolve, threshold)
})
}
- // Vertex Shader
- static #vsSource = `#version 300 es
-#pragma vscode_glsllint_stage: vert
-precision highp float;
-layout (location=0) in vec4 position;
-layout (location=1) in vec2 uv;
-
-out vec2 uv_pos;
-
-void main() {
- uv_pos = uv;
- gl_Position = position;
-}`
-
- // Fragment shader
- static #fsSource = `#version 300 es
-#pragma vscode_glsllint_stage: frag
-precision highp float;
-precision highp int;
-
-in vec2 uv_pos;
-out vec4 fragColor;
-
-// blockhash - array of precalculated block hash components
-// threshold - 0xfffffff8 for send/change blocks, 0xfffffe00 for all else
-// workload - Defines canvas size
-layout(std140) uniform UBO {
- uint blockhash[8];
- uint threshold;
- float workload;
-};
-
-// Random work values
-// First 2 bytes will be overwritten by texture pixel position
-// Second 2 bytes will be modified if the canvas size is greater than 256x256
-// Last 4 bytes remain as generated externally
-layout(std140) uniform WORK {
- uvec4 work[2];
-};
-
-// Defined separately from uint v[32] below as the original value is required
-// to calculate the second uint32 of the digest for threshold comparison
-#define BLAKE2B_IV32_1 0x6A09E667u
-
-// Both buffers represent 16 uint64s as 32 uint32s
-// because that's what GLSL offers, just like Javascript
-
-// Compression buffer, intialized to 2 instances of the initialization vector
-// The following values have been modified from the BLAKE2B_IV:
-// OUTLEN is constant 8 bytes
-// v[0] ^= 0x01010000u ^ uint(OUTLEN);
-// INLEN is constant 40 bytes: work value (8) + block hash (32)
-// v[24] ^= uint(INLEN);
-// It's always the "last" compression at this INLEN
-// v[28] = ~v[28];
-// v[29] = ~v[29];
-uint v[32] = uint[32](
- 0xF2BDC900u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
- 0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
- 0xADE682D1u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
- 0xFB41BD6Bu, 0x1F83D9ABu, 0x137E2179u, 0x5BE0CD19u,
- 0xF3BCC908u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
- 0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
- 0xADE682F9u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
- 0x04BE4294u, 0xE07C2654u, 0x137E2179u, 0x5BE0CD19u
-);
-// Input data buffer
-uint m[32];
-
-// These are offsets into the input data buffer for each mixing step.
-// They are multiplied by 2 from the original SIGMA values in
-// the C reference implementation, which refered to uint64s.
-const int SIGMA82[192] = int[192](
- 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,
- 28,20,8,16,18,30,26,12,2,24,0,4,22,14,10,6,
- 22,16,24,0,10,4,30,26,20,28,6,12,14,2,18,8,
- 14,18,6,2,26,24,22,28,4,12,10,20,8,0,30,16,
- 18,0,10,14,4,8,20,30,28,2,22,24,12,16,6,26,
- 4,24,12,20,0,22,16,6,8,26,14,10,30,28,2,18,
- 24,10,2,30,28,26,8,20,0,14,12,6,18,4,16,22,
- 26,22,14,28,24,2,6,18,10,0,30,8,16,12,4,20,
- 12,30,28,18,22,6,0,16,24,4,26,14,2,8,20,10,
- 20,4,16,8,14,12,2,10,30,22,18,28,6,24,26,0,
- 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,
- 28,20,8,16,18,30,26,12,2,24,0,4,22,14,10,6
-);
-
-// 64-bit unsigned addition within the compression buffer
-// Sets v[a,a+1] += b
-// b0 is the low 32 bits of b, b1 represents the high 32 bits
-void add_uint64 (int a, uint b0, uint b1) {
- uint o0 = v[a] + b0;
- uint o1 = v[a + 1] + b1;
- if (v[a] > 0xFFFFFFFFu - b0) { // did low 32 bits overflow?
- o1++;
- }
- v[a] = o0;
- v[a + 1] = o1;
-}
-
-// G Mixing function
-void B2B_G (int a, int b, int c, int d, int ix, int iy) {
- add_uint64(a, v[b], v[b+1]);
- add_uint64(a, m[ix], m[ix + 1]);
-
- // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
- uint xor0 = v[d] ^ v[a];
- uint xor1 = v[d + 1] ^ v[a + 1];
- v[d] = xor1;
- v[d + 1] = xor0;
-
- add_uint64(c, v[d], v[d+1]);
-
- // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
- xor0 = v[b] ^ v[c];
- xor1 = v[b + 1] ^ v[c + 1];
- v[b] = (xor0 >> 24) ^ (xor1 << 8);
- v[b + 1] = (xor1 >> 24) ^ (xor0 << 8);
-
- add_uint64(a, v[b], v[b+1]);
- add_uint64(a, m[iy], m[iy + 1]);
-
- // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
- xor0 = v[d] ^ v[a];
- xor1 = v[d + 1] ^ v[a + 1];
- v[d] = (xor0 >> 16) ^ (xor1 << 16);
- v[d + 1] = (xor1 >> 16) ^ (xor0 << 16);
-
- add_uint64(c, v[d], v[d+1]);
-
- // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
- xor0 = v[b] ^ v[c];
- xor1 = v[b + 1] ^ v[c + 1];
- v[b] = (xor1 >> 31) ^ (xor0 << 1);
- v[b + 1] = (xor0 >> 31) ^ (xor1 << 1);
-}
-
-void main() {
- int i;
- uvec4 u_work0 = work[0];
- uvec4 u_work1 = work[1];
- uint uv_x = uint(uv_pos.x * workload);
- uint uv_y = uint(uv_pos.y * workload);
- uint x_pos = uv_x % 256u;
- uint y_pos = uv_y % 256u;
- uint x_index = (uv_x - x_pos) / 256u;
- uint y_index = (uv_y - y_pos) / 256u;
-
- // First 2 work bytes are the x,y pos within the 256x256 area, the next
- // two bytes are modified from the random generated value, XOR'd with
- // the x,y area index of where this pixel is located
- m[0] = (x_pos ^ (y_pos << 8) ^ ((u_work0.b ^ x_index) << 16) ^ ((u_work0.a ^ y_index) << 24));
-
- // Remaining bytes are un-modified from the random generated value
- m[1] = (u_work1.r ^ (u_work1.g << 8) ^ (u_work1.b << 16) ^ (u_work1.a << 24));
-
- // Block hash
- for (i=0;i<8;i++) {
- m[i+2] = blockhash[i];
- }
-
- // twelve rounds of mixing
- for(i=0;i<12;i++) {
- B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1]);
- B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3]);
- B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5]);
- B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7]);
- B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9]);
- B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11]);
- B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13]);
- B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15]);
- }
-
- // Pixel data is multipled by threshold test result (0 or 1)
- // First 4 bytes insignificant, only calculate digest of second 4 bytes
- if ((BLAKE2B_IV32_1 ^ v[1] ^ v[17]) > threshold) {
- fragColor = vec4(
- float(x_index + 1u)/255., // +1 to distinguish from 0 (unsuccessful) pixels
- float(y_index + 1u)/255., // Same as previous
- float(x_pos)/255., // Return the 2 custom bytes used in work value
- float(y_pos)/255. // Second custom byte
- );
- } else {
- discard;
- }
-}`
/** Used to set canvas size. Must be a multiple of 256. */
static #WORKLOAD: number = 256 * Math.max(1, Math.floor(navigator.hardwareConcurrency))
return out
}
- static #gl: WebGL2RenderingContext | null
- static #program: WebGLProgram | null
- static #vertexShader: WebGLShader | null
- static #fragmentShader: WebGLShader | null
- static #positionBuffer: WebGLBuffer | null
- static #uvBuffer: WebGLBuffer | null
- static #uboBuffer: WebGLBuffer | null
- static #workBuffer: WebGLBuffer | null
- static #query: WebGLQuery | null
- static #pixels: Uint8Array
- // Vertex Positions, 2 triangles
- static #positions = new Float32Array([
- -1, -1, 0, -1, 1, 0, 1, 1, 0,
- 1, -1, 0, 1, 1, 0, -1, -1, 0
- ])
- // Texture Positions
- static #uvPosArray = new Float32Array([
- 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1
- ])
-
- // Compile
- static {
- this.#gl = new OffscreenCanvas(this.#WORKLOAD, this.#WORKLOAD).getContext('webgl2')
- if (this.#gl == null) throw new Error('WebGL 2 is required')
- this.#gl.clearColor(0, 0, 0, 1)
-
- this.#program = this.#gl.createProgram()
- if (this.#program == null) throw new Error('Failed to create shader program')
-
- this.#vertexShader = this.#gl.createShader(this.#gl.VERTEX_SHADER)
- if (this.#vertexShader == null) throw new Error('Failed to create vertex shader')
- this.#gl.shaderSource(this.#vertexShader, this.#vsSource)
- this.#gl.compileShader(this.#vertexShader)
- if (!this.#gl.getShaderParameter(this.#vertexShader, this.#gl.COMPILE_STATUS))
- throw new Error(this.#gl.getShaderInfoLog(this.#vertexShader) ?? `Failed to compile vertex shader`)
-
- this.#fragmentShader = this.#gl.createShader(this.#gl.FRAGMENT_SHADER)
- if (this.#fragmentShader == null) throw new Error('Failed to create fragment shader')
- this.#gl.shaderSource(this.#fragmentShader, this.#fsSource)
- this.#gl.compileShader(this.#fragmentShader)
- if (!this.#gl.getShaderParameter(this.#fragmentShader, this.#gl.COMPILE_STATUS))
- throw new Error(this.#gl.getShaderInfoLog(this.#fragmentShader) ?? `Failed to compile fragment shader`)
-
- this.#gl.attachShader(this.#program, this.#vertexShader)
- this.#gl.attachShader(this.#program, this.#fragmentShader)
- this.#gl.linkProgram(this.#program)
- if (!this.#gl.getProgramParameter(this.#program, this.#gl.LINK_STATUS))
- throw new Error(this.#gl.getProgramInfoLog(this.#program) ?? `Failed to link program`)
-
- // Construct simple 2D geometry
- this.#gl.useProgram(this.#program)
- const triangleArray = this.#gl.createVertexArray()
- this.#gl.bindVertexArray(triangleArray)
-
- this.#positionBuffer = this.#gl.createBuffer()
- this.#gl.bindBuffer(this.#gl.ARRAY_BUFFER, this.#positionBuffer)
- this.#gl.bufferData(this.#gl.ARRAY_BUFFER, this.#positions, this.#gl.STATIC_DRAW)
- this.#gl.vertexAttribPointer(0, 3, this.#gl.FLOAT, false, 0, 0)
- this.#gl.enableVertexAttribArray(0)
-
- this.#uvBuffer = this.#gl.createBuffer()
- this.#gl.bindBuffer(this.#gl.ARRAY_BUFFER, this.#uvBuffer)
- this.#gl.bufferData(this.#gl.ARRAY_BUFFER, this.#uvPosArray, this.#gl.STATIC_DRAW)
- this.#gl.vertexAttribPointer(1, 2, this.#gl.FLOAT, false, 0, 0)
- this.#gl.enableVertexAttribArray(1)
-
- this.#uboBuffer = this.#gl.createBuffer()
- this.#gl.bindBuffer(this.#gl.UNIFORM_BUFFER, this.#uboBuffer)
- this.#gl.bufferData(this.#gl.UNIFORM_BUFFER, 144, this.#gl.DYNAMIC_DRAW)
- this.#gl.bindBuffer(this.#gl.UNIFORM_BUFFER, null)
- this.#gl.bindBufferBase(this.#gl.UNIFORM_BUFFER, 0, this.#uboBuffer)
- this.#gl.uniformBlockBinding(this.#program, this.#gl.getUniformBlockIndex(this.#program, 'UBO'), 0)
-
- this.#workBuffer = this.#gl.createBuffer()
- this.#gl.bindBuffer(this.#gl.UNIFORM_BUFFER, this.#workBuffer)
- this.#gl.bufferData(this.#gl.UNIFORM_BUFFER, 32, this.#gl.STREAM_DRAW)
- this.#gl.bindBuffer(this.#gl.UNIFORM_BUFFER, null)
- this.#gl.bindBufferBase(this.#gl.UNIFORM_BUFFER, 1, this.#workBuffer)
- this.#gl.uniformBlockBinding(this.#program, this.#gl.getUniformBlockIndex(this.#program, 'WORK'), 1)
-
- this.#pixels = new Uint8Array(this.#gl.drawingBufferWidth * this.#gl.drawingBufferHeight * 4)
- this.#query = this.#gl.createQuery()
+ static #device: GPUDevice | null = null;
+ static #pipeline: GPUComputePipeline | null = null;
+ static #workgroupSize: number = 256; // Must align with shader
+ static #bindGroupLayout: GPUBindGroupLayout | null = null;
+
+
+ // WebGPU Compute Shader
+ static #computeShader = `
+ @group(0) @binding(0) var<uniform> ubo: UBO;
+ @group(0) @binding(1) var<storage, read_write> work: array<vec4<u32>, 2>;
+
+ struct UBO {
+ blockhash: array<vec4<u32>, 2>,
+ threshold: u32,
+ workload: f32,
+ };
+
+ /**
+ * Defined separately from uint v[32] below as the original value is required
+ * to calculate the second uint32 of the digest for threshold comparison
+ */
+ const BLAKE2B_IV32_1: u32 = 0x6A09E667u;
+
+ /**
+ * These are offsets into the input data buffer for each mixing step.
+ * They are multiplied by 2 from the original SIGMA values in
+ * the C reference implementation, which refered to uint64s.
+ */
+ const SIGMA82: array<u32, 192> = array<u32, 192>(
+ 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,
+ 28,20,8,16,18,30,26,12,2,24,0,4,22,14,10,6,
+ 22,16,24,0,10,4,30,26,20,28,6,12,14,2,18,8,
+ 14,18,6,2,26,24,22,28,4,12,10,20,8,0,30,16,
+ 18,0,10,14,4,8,20,30,28,2,22,24,12,16,6,26,
+ 4,24,12,20,0,22,16,6,8,26,14,10,30,28,2,18,
+ 24,10,2,30,28,26,8,20,0,14,12,6,18,4,16,22,
+ 26,22,14,28,24,2,6,18,10,0,30,8,16,12,4,20,
+ 12,30,28,18,22,6,0,16,24,4,26,14,2,8,20,10,
+ 20,4,16,8,14,12,2,10,30,22,18,28,6,24,26,0,
+ 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,
+ 28,20,8,16,18,30,26,12,2,24,0,4,22,14,10,6
+ );
+
+ /**
+ * 64-bit unsigned addition within the compression buffer
+ * Sets v[a,a+1] += b
+ * b0 is the low 32 bits of b, b1 represents the high 32 bits
+ */
+ fn add_uint64 (vv: ptr<function, array<u32, 32>>, a: u32, b0: u32, b1: u32) {
+ var v: array<u32, 32> = (*vv);
+ var o0: u32 = v[a] + b0;
+ var o1: u32 = v[a+1u] + b1;
+ if (v[a] > 0xFFFFFFFFu - b0) { // did low 32 bits overflow?
+ o1 = o1 + 1u;
+ }
+ v[a] = o0;
+ v[a+1u] = o1;
+ }
+
+ /**
+ * G Mixing function
+ */
+ fn B2B_G (ptr_v: ptr<function, array<u32, 32>>, ptr_m: ptr<function, array<u32, 16>>, a: u32, b: u32, c: u32, d: u32, ix: u32, iy: u32) {
+ var v: array<u32, 32> = (*ptr_v);
+ var m: array<u32, 16> = (*ptr_m);
+ add_uint64(ptr_v, a, v[b], v[b+1u]);
+ add_uint64(ptr_v, a, m[ix], m[ix+1u]);
+
+ // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
+ var xor0: u32 = v[d] ^ v[a];
+ var xor1: u32 = v[d+1u] ^ v[a+1u];
+ v[d] = xor1;
+ v[d+1u] = xor0;
+
+ add_uint64(ptr_v, c, v[d], v[d+1u]);
+
+ // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
+ xor0 = v[b] ^ v[c];
+ xor1 = v[b+1u] ^ v[c+1u];
+ v[b] = (xor0 >> 24u) ^ (xor1 << 8u);
+ v[b+1u] = (xor1 >> 24u) ^ (xor0 << 8u);
+
+ add_uint64(ptr_v, a, v[b], v[b+1u]);
+ add_uint64(ptr_v, a, m[iy], m[iy+1u]);
+
+ // v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
+ xor0 = v[d] ^ v[a];
+ xor1 = v[d+1u] ^ v[a+1u];
+ v[d] = (xor0 >> 16u) ^ (xor1 << 16u);
+ v[d+1u] = (xor1 >> 16u) ^ (xor0 << 16u);
+
+ add_uint64(ptr_v, c, v[d], v[d+1u]);
+
+ // v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
+ xor0 = v[b] ^ v[c];
+ xor1 = v[b+1u] ^ v[c+1u];
+ v[b] = (xor1 >> 31u) ^ (xor0 << 1u);
+ v[b+1u] = (xor0 >> 31u) ^ (xor1 << 1u);
+ }
+
+ /**
+ * Main compute function
+ */
+ @compute @workgroup_size(${this.#workgroupSize})
+ fn main(@builtin(global_invocation_id) global_id : vec3<u32>) {
+ let uv_x = global_id.x;
+ let uv_y = global_id.y;
+
+ // Check bounds, may be unnecessary with proper dispatch size
+ if (uv_x >= u32(ubo.workload) || uv_y >= u32(ubo.workload) ) {
+ return;
+ }
+
+ var m: array<u32, 16>;
+ var u_work0: vec4<u32> = work[0u];
+ var u_work1: vec4<u32> = work[1u];
+ let x_pos = uv_x % 256u;
+ let y_pos = uv_y % 256u;
+ let x_index = (uv_x - x_pos) / 256u;
+ let y_index = (uv_y - y_pos) / 256u;
+
+ // First 2 work bytes are the x,y pos within the 256x256 area, the next
+ // two bytes are modified from the random generated value, XOR'd with
+ // the x,y area index of where this pixel is located
+ m[0u] = (x_pos ^ (y_pos << 8u) ^ ((u_work0.b ^ x_index) << 16u) ^ ((u_work0.a ^ y_index) << 24u));
+
+ // Remaining bytes are un-modified from the random generated value
+ m[1u] = (u_work1.r ^ (u_work1.g << 8u) ^ (u_work1.b << 16u) ^ (u_work1.a << 24u));
+
+ // Block hash
+ m[2u] = ubo.blockhash[0u].x;
+ m[3u] = ubo.blockhash[0u].y;
+ m[4u] = ubo.blockhash[0u].z;
+ m[5u] = ubo.blockhash[0u].w;
+ m[6u] = ubo.blockhash[1u].x;
+ m[7u] = ubo.blockhash[1u].y;
+ m[8u] = ubo.blockhash[1u].z;
+ m[9u] = ubo.blockhash[1u].w;
+
+ /**
+ * Compression buffer, intialized to 2 instances of the initialization vector
+ * The following values have been modified from the BLAKE2B_IV:
+ * OUTLEN is constant 8 bytes
+ * v[0] ^= 0x01010000u ^ uint(OUTLEN);
+ * INLEN is constant 40 bytes: work value (8) + block hash (32)
+ * v[24] ^= uint(INLEN);
+ * It's always the "last" compression at this INLEN
+ * v[28] = ~v[28];
+ * v[29] = ~v[29];
+ */
+ var v = array<u32, 32>(
+ 0xF2BDC900u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
+ 0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
+ 0xADE682D1u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
+ 0xFB41BD6Bu, 0x1F83D9ABu, 0x137E2179u, 0x5BE0CD19u,
+ 0xF3BCC908u, 0x6A09E667u, 0x84CAA73Bu, 0xBB67AE85u,
+ 0xFE94F82Bu, 0x3C6EF372u, 0x5F1D36F1u, 0xA54FF53Au,
+ 0xADE682F9u, 0x510E527Fu, 0x2B3E6C1Fu, 0x9B05688Cu,
+ 0x04BE4294u, 0xE07C2654u, 0x137E2179u, 0x5BE0CD19u
+ );
+
+ // twelve rounds of mixing
+ for (var i: u32 = 0u; i < 12u; i = i + 1u) {
+ B2B_G(&v, &m, 0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1]);
+ B2B_G(&v, &m, 2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3]);
+ B2B_G(&v, &m, 4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5]);
+ B2B_G(&v, &m, 6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7]);
+ B2B_G(&v, &m, 0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9]);
+ B2B_G(&v, &m, 2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11]);
+ B2B_G(&v, &m, 4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13]);
+ B2B_G(&v, &m, 6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15]);
+ }
+
+ // Store the result directly into work array
+ if ((BLAKE2B_IV32_1 ^ v[1u] ^ v[17u]) > ubo.threshold) {
+ work[0u].x = x_index + 1u;
+ work[0u].y = y_index + 1u;
+ work[0u].z = x_pos;
+ work[0u].w = y_pos;
+ }
+ }
+ `;
+
+ // Initialize WebGPU
+ static async #initializeWebGPU (): Promise<void> {
+ if (!navigator.gpu) {
+ throw new Error("WebGPU is not supported.")
+ }
+
+ const adapter = await navigator.gpu.requestAdapter()
+ if (!adapter) {
+ throw new Error("No suitable WebGPU adapter found.")
+ }
+
+ this.#device = await adapter.requestDevice()
+ this.#bindGroupLayout = this.#device.createBindGroupLayout({
+ entries: [
+ {
+ binding: 0,
+ visibility: GPUShaderStage.COMPUTE,
+ buffer: { type: 'uniform', },
+ },
+ {
+ binding: 1,
+ visibility: GPUShaderStage.COMPUTE,
+ buffer: { type: 'storage', },
+ },
+ ],
+ })
+
+ this.#pipeline = this.#device.createComputePipeline({
+ layout: this.#device.createPipelineLayout({
+ bindGroupLayouts: [this.#bindGroupLayout],
+ }),
+ compute: {
+ module: this.#device.createShaderModule({
+ code: this.#computeShader,
+ }),
+ entryPoint: 'main',
+ },
+ })
}
- static #calculate (hashHex: string, callback: (nonce: string | PromiseLike<string>) => any, threshold: number): void {
- if (Pow.#gl == null) throw new Error('WebGL 2 is required')
+
+ static async #calculate (hashHex: string, callback: (nonce: string | PromiseLike<string>) => any, threshold: number): Promise<void> {
+
if (!/^[A-F-a-f0-9]{64}$/.test(hashHex)) throw new Error(`invalid_hash ${hashHex}`)
if (typeof threshold !== 'number') throw new TypeError(`Invalid threshold ${threshold}`)
- if (this.#gl == null) throw new Error('WebGL 2 is required')
+
+ // Ensure WebGPU is initialized. Call this once
+ if (!this.#device) {
+ this.#initializeWebGPU()
+ .then(() => {
+ this.#calculate(hashHex, callback, threshold) // restart calculation
+ })
+ .catch((error) => {
+ console.error("Failed to initalize WebGPU:", error)
+ })
+ return // Stop execution until WebGPU is initalized
+ }
// Set up uniform buffer object
const uboView = new DataView(new ArrayBuffer(144))
}
uboView.setUint32(128, threshold, true)
uboView.setFloat32(132, Pow.#WORKLOAD - 1, true)
- Pow.#gl.bindBuffer(Pow.#gl.UNIFORM_BUFFER, Pow.#uboBuffer)
- Pow.#gl.bufferSubData(Pow.#gl.UNIFORM_BUFFER, 0, uboView)
- Pow.#gl.bindBuffer(Pow.#gl.UNIFORM_BUFFER, null)
+ const uboBuffer = this.#device.createBuffer({
+ size: uboView.byteLength,
+ usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,
+ })
+ this.#device.queue.writeBuffer(uboBuffer, 0, uboView)
- // Draw output until success or progressCallback says to stop
+ // Work buffer
const work = new Uint8Array(8)
- const draw = (): void => {
- if (Pow.#gl == null) throw new Error('WebGL 2 is required')
- if (Pow.#query == null) throw new Error('WebGL 2 is required to run queries')
- Pow.#gl.clear(Pow.#gl.COLOR_BUFFER_BIT)
-
- // Upload work buffer
- crypto.getRandomValues(work)
- Pow.#gl.bindBuffer(Pow.#gl.UNIFORM_BUFFER, Pow.#workBuffer)
- Pow.#gl.bufferSubData(Pow.#gl.UNIFORM_BUFFER, 0, Uint32Array.from(work))
- Pow.#gl.bindBuffer(Pow.#gl.UNIFORM_BUFFER, null)
-
- Pow.#gl.beginQuery(Pow.#gl.ANY_SAMPLES_PASSED_CONSERVATIVE, Pow.#query)
- Pow.#gl.drawArrays(Pow.#gl.TRIANGLES, 0, 6)
- Pow.#gl.endQuery(Pow.#gl.ANY_SAMPLES_PASSED_CONSERVATIVE)
-
- requestAnimationFrame(checkQueryResult)
- }
+ crypto.getRandomValues(work)
+ const workBuffer = this.#device.createBuffer({
+ size: work.byteLength,
+ usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST | GPUBufferUsage.COPY_SRC,
+ })
+ this.#device.queue.writeBuffer(workBuffer, 0, work)
+
+ const bindGroup = this.#device.createBindGroup({
+ layout: this.#bindGroupLayout!,
+ entries: [
+ {
+ binding: 0,
+ resource: {
+ buffer: uboBuffer,
+ },
+ },
+ {
+ binding: 1,
+ resource: {
+ buffer: workBuffer,
+ },
+ },
+ ],
+ })
- function checkQueryResult () {
- if (Pow.#gl == null) throw new Error('WebGL 2 is required to check query results')
- if (Pow.#query == null) throw new Error('Query not found')
- if (Pow.#gl.getQueryParameter(Pow.#query, Pow.#gl.QUERY_RESULT_AVAILABLE)) {
- const anySamplesPassed = Pow.#gl.getQueryParameter(Pow.#query, Pow.#gl.QUERY_RESULT)
- if (anySamplesPassed) {
- // A valid nonce was found
- readBackResult()
- } else {
- // No valid nonce found, start the next draw call
- requestAnimationFrame(draw)
- }
- } else {
- // Query result not yet available, check again in the next frame
- requestAnimationFrame(checkQueryResult)
- }
- }
- function readBackResult () {
- if (Pow.#gl == null) throw new Error('WebGL 2 is required to check read results')
- Pow.#gl.readPixels(0, 0, Pow.#gl.drawingBufferWidth, Pow.#gl.drawingBufferHeight, Pow.#gl.RGBA, Pow.#gl.UNSIGNED_BYTE, Pow.#pixels)
- // Check the pixels for any success
- for (let i = 0; i < Pow.#pixels.length; i += 4) {
- if (Pow.#pixels[i] !== 0) {
- const hex = Pow.#hexify(work.subarray(4, 8)) + Pow.#hexify([
- Pow.#pixels[i + 2],
- Pow.#pixels[i + 3],
- work[2] ^ (Pow.#pixels[i] - 1),
- work[3] ^ (Pow.#pixels[i + 1] - 1)
- ])
- // Return the work value with the custom bits
- typeof callback === 'function' && callback(hex)
- return
- }
+
+ const commandEncoder = this.#device.createCommandEncoder()
+ const passEncoder = commandEncoder.beginComputePass()
+ passEncoder.setPipeline(this.#pipeline!)
+ passEncoder.setBindGroup(0, bindGroup)
+
+ const dispatchSizeX = Math.ceil(this.#WORKLOAD / this.#workgroupSize)
+ const dispatchSizeY = Math.ceil(this.#WORKLOAD / this.#workgroupSize)
+
+ passEncoder.dispatchWorkgroups(dispatchSizeX, dispatchSizeY)
+ passEncoder.end()
+
+ // Get result
+ const resultStagingBuffer = this.#device.createBuffer({
+ size: workBuffer.size,
+ usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ
+ })
+ commandEncoder.copyBufferToBuffer(
+ workBuffer,
+ 0,
+ resultStagingBuffer,
+ 0,
+ workBuffer.size
+ )
+ this.#device.queue.submit([commandEncoder.finish()])
+
+ // Get result
+ await resultStagingBuffer.mapAsync(GPUMapMode.READ)
+
+ const arrayBuffer = resultStagingBuffer.getMappedRange()
+ const result = new Uint32Array(arrayBuffer)
+ resultStagingBuffer.unmap() // Unmap after reading
+
+ for (let i = 0; i < result.length; i += 4) {
+ if (result[i] !== 0) {
+ const hex = this.#hexify(work.subarray(4, 8)) + this.#hexify([
+ result[i + 2],
+ result[i + 3],
+ work[2] ^ (result[i] - 1),
+ work[3] ^ (result[i + 1] - 1)
+ ])
+ typeof callback === 'function' && callback(hex)
+ return
}
}
- draw()
+ // No result found. Redraw
+ requestAnimationFrame(() => this.#calculate(hashHex, callback, threshold))
}
}