// Defined separately from uint v[32] below as the original value is required
// to calculate the second uint32 of the digest for threshold comparison
-#define BLAKE2B_IV32_1 0x6A09E667u
+const uint BLAKE2B_IV32_1 = 0x6A09E667u;
// Both buffers represent 16 uint64s as 32 uint32s
// because that's what GLSL offers, just like Javascript
// These are offsets into the input data buffer for each mixing step.
// They are multiplied by 2 from the original SIGMA values in
// the C reference implementation, which refered to uint64s.
-const int SIGMA82[192] = int[192](
- 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,
- 28,20,8,16,18,30,26,12,2,24,0,4,22,14,10,6,
- 22,16,24,0,10,4,30,26,20,28,6,12,14,2,18,8,
- 14,18,6,2,26,24,22,28,4,12,10,20,8,0,30,16,
- 18,0,10,14,4,8,20,30,28,2,22,24,12,16,6,26,
- 4,24,12,20,0,22,16,6,8,26,14,10,30,28,2,18,
- 24,10,2,30,28,26,8,20,0,14,12,6,18,4,16,22,
- 26,22,14,28,24,2,6,18,10,0,30,8,16,12,4,20,
- 12,30,28,18,22,6,0,16,24,4,26,14,2,8,20,10,
- 20,4,16,8,14,12,2,10,30,22,18,28,6,24,26,0,
- 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,
- 28,20,8,16,18,30,26,12,2,24,0,4,22,14,10,6
+const uint SIGMA82[192] = uint[192](
+ 0u,2u,4u,6u,8u,10u,12u,14u,16u,18u,20u,22u,24u,26u,28u,30u,
+ 28u,20u,8u,16u,18u,30u,26u,12u,2u,24u,0u,4u,22u,14u,10u,6u,
+ 22u,16u,24u,0u,10u,4u,30u,26u,20u,28u,6u,12u,14u,2u,18u,8u,
+ 14u,18u,6u,2u,26u,24u,22u,28u,4u,12u,10u,20u,8u,0u,30u,16u,
+ 18u,0u,10u,14u,4u,8u,20u,30u,28u,2u,22u,24u,12u,16u,6u,26u,
+ 4u,24u,12u,20u,0u,22u,16u,6u,8u,26u,14u,10u,30u,28u,2u,18u,
+ 24u,10u,2u,30u,28u,26u,8u,20u,0u,14u,12u,6u,18u,4u,16u,22u,
+ 26u,22u,14u,28u,24u,2u,6u,18u,10u,0u,30u,8u,16u,12u,4u,20u,
+ 12u,30u,28u,18u,22u,6u,0u,16u,24u,4u,26u,14u,2u,8u,20u,10u,
+ 20u,4u,16u,8u,14u,12u,2u,10u,30u,22u,18u,28u,6u,24u,26u,0u,
+ 0u,2u,4u,6u,8u,10u,12u,14u,16u,18u,20u,22u,24u,26u,28u,30u,
+ 28u,20u,8u,16u,18u,30u,26u,12u,2u,24u,0u,4u,22u,14u,10u,6u
);
// 64-bit unsigned addition within the compression buffer
// Sets v[a,a+1] += b
// b0 is the low 32 bits of b, b1 represents the high 32 bits
-void add_uint64 (int a, uint b0, uint b1) {
+void add_uint64 (uint a, uint b0, uint b1) {
uint o0 = v[a] + b0;
- uint o1 = v[a + 1] + b1;
+ uint o1 = v[a+1u] + b1;
if (v[a] > 0xFFFFFFFFu - b0) { // did low 32 bits overflow?
o1++;
}
v[a] = o0;
- v[a + 1] = o1;
+ v[a+1u] = o1;
}
// G Mixing function
-void B2B_G (int a, int b, int c, int d, int ix, int iy) {
- add_uint64(a, v[b], v[b+1]);
- add_uint64(a, m[ix], m[ix + 1]);
+void B2B_G (uint a, uint b, uint c, uint d, uint ix, uint iy) {
+ add_uint64(a, v[b], v[b+1u]);
+ add_uint64(a, m[ix], m[ix+1u]);
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
uint xor0 = v[d] ^ v[a];
- uint xor1 = v[d + 1] ^ v[a + 1];
+ uint xor1 = v[d+1u] ^ v[a+1u];
v[d] = xor1;
- v[d + 1] = xor0;
+ v[d+1u] = xor0;
- add_uint64(c, v[d], v[d+1]);
+ add_uint64(c, v[d], v[d+1u]);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
xor0 = v[b] ^ v[c];
- xor1 = v[b + 1] ^ v[c + 1];
- v[b] = (xor0 >> 24) ^ (xor1 << 8);
- v[b + 1] = (xor1 >> 24) ^ (xor0 << 8);
+ xor1 = v[b+1u] ^ v[c+1u];
+ v[b] = (xor0 >> 24u) ^ (xor1 << 8u);
+ v[b+1u] = (xor1 >> 24u) ^ (xor0 << 8u);
- add_uint64(a, v[b], v[b+1]);
- add_uint64(a, m[iy], m[iy + 1]);
+ add_uint64(a, v[b], v[b+1u]);
+ add_uint64(a, m[iy], m[iy+1u]);
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
xor0 = v[d] ^ v[a];
- xor1 = v[d + 1] ^ v[a + 1];
- v[d] = (xor0 >> 16) ^ (xor1 << 16);
- v[d + 1] = (xor1 >> 16) ^ (xor0 << 16);
+ xor1 = v[d+1u] ^ v[a+1u];
+ v[d] = (xor0 >> 16u) ^ (xor1 << 16u);
+ v[d+1u] = (xor1 >> 16u) ^ (xor0 << 16u);
- add_uint64(c, v[d], v[d+1]);
+ add_uint64(c, v[d], v[d+1u]);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
xor0 = v[b] ^ v[c];
- xor1 = v[b + 1] ^ v[c + 1];
- v[b] = (xor1 >> 31) ^ (xor0 << 1);
- v[b + 1] = (xor0 >> 31) ^ (xor1 << 1);
+ xor1 = v[b+1u] ^ v[c+1u];
+ v[b] = (xor1 >> 31u) ^ (xor0 << 1u);
+ v[b+1u] = (xor0 >> 31u) ^ (xor1 << 1u);
}
void main() {
int i;
- uvec4 u_work0 = work[0];
- uvec4 u_work1 = work[1];
+ uvec4 u_work0 = work[0u];
+ uvec4 u_work1 = work[1u];
uint uv_x = uint(uv_pos.x * workload);
uint uv_y = uint(uv_pos.y * workload);
uint x_pos = uv_x % 256u;
// First 2 work bytes are the x,y pos within the 256x256 area, the next
// two bytes are modified from the random generated value, XOR'd with
// the x,y area index of where this pixel is located
- m[0] = (x_pos ^ (y_pos << 8) ^ ((u_work0.b ^ x_index) << 16) ^ ((u_work0.a ^ y_index) << 24));
+ m[0u] = (x_pos ^ (y_pos << 8u) ^ ((u_work0.b ^ x_index) << 16u) ^ ((u_work0.a ^ y_index) << 24u));
// Remaining bytes are un-modified from the random generated value
- m[1] = (u_work1.r ^ (u_work1.g << 8) ^ (u_work1.b << 16) ^ (u_work1.a << 24));
+ m[1u] = (u_work1.r ^ (u_work1.g << 8u) ^ (u_work1.b << 16u) ^ (u_work1.a << 24u));
// Block hash
- for (i=0;i<8;i++) {
- m[i+2] = blockhash[i];
+ for (uint i = 0u; i < 8u; i = i + 1u) {
+ m[i+2u] = blockhash[i];
}
// twelve rounds of mixing
- for(i=0;i<12;i++) {
- B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1]);
- B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3]);
- B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5]);
- B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7]);
- B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9]);
- B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11]);
- B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13]);
- B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15]);
+ for(uint i = 0u; i < 12u; i = i + 1u) {
+ B2B_G(0u, 8u, 16u, 24u, SIGMA82[i * 16u + 0u], SIGMA82[i * 16u + 1u]);
+ B2B_G(2u, 10u, 18u, 26u, SIGMA82[i * 16u + 2u], SIGMA82[i * 16u + 3u]);
+ B2B_G(4u, 12u, 20u, 28u, SIGMA82[i * 16u + 4u], SIGMA82[i * 16u + 5u]);
+ B2B_G(6u, 14u, 22u, 30u, SIGMA82[i * 16u + 6u], SIGMA82[i * 16u + 7u]);
+ B2B_G(0u, 10u, 20u, 30u, SIGMA82[i * 16u + 8u], SIGMA82[i * 16u + 9u]);
+ B2B_G(2u, 12u, 22u, 24u, SIGMA82[i * 16u + 10u], SIGMA82[i * 16u + 11u]);
+ B2B_G(4u, 14u, 16u, 26u, SIGMA82[i * 16u + 12u], SIGMA82[i * 16u + 13u]);
+ B2B_G(6u, 8u, 18u, 28u, SIGMA82[i * 16u + 14u], SIGMA82[i * 16u + 15u]);
}
// Pixel data is multipled by threshold test result (0 or 1)
// First 4 bytes insignificant, only calculate digest of second 4 bytes
- if ((BLAKE2B_IV32_1 ^ v[1] ^ v[17]) > threshold) {
+ if ((BLAKE2B_IV32_1 ^ v[1u] ^ v[17u]) > threshold) {
fragColor = vec4(
- float(x_index + 1u)/255., // +1 to distinguish from 0 (unsuccessful) pixels
- float(y_index + 1u)/255., // Same as previous
- float(x_pos)/255., // Return the 2 custom bytes used in work value
- float(y_pos)/255. // Second custom byte
+ float(x_index + 1u)/255.0, // +1 to distinguish from 0 (unsuccessful) pixels
+ float(y_index + 1u)/255.0, // Same as previous
+ float(x_pos)/255.0, // Return the 2 custom bytes used in work value
+ float(y_pos)/255.0 // Second custom byte
);
} else {
discard;
// Draw output until success or progressCallback says to stop
const work = new Uint8Array(8)
+ let start: DOMHighResTimeStamp
const draw = (): void => {
+ start = performance.now()
if (Pow.#gl == null) throw new Error('WebGL 2 is required')
if (Pow.#query == null) throw new Error('WebGL 2 is required to run queries')
Pow.#gl.clear(Pow.#gl.COLOR_BUFFER_BIT)
function checkQueryResult () {
if (Pow.#gl == null) throw new Error('WebGL 2 is required to check query results')
if (Pow.#query == null) throw new Error('Query not found')
+ console.log(`checking (${performance.now() - start} ms)`)
if (Pow.#gl.getQueryParameter(Pow.#query, Pow.#gl.QUERY_RESULT_AVAILABLE)) {
+ console.log(`AVAILABLE (${performance.now() - start} ms)`)
const anySamplesPassed = Pow.#gl.getQueryParameter(Pow.#query, Pow.#gl.QUERY_RESULT)
if (anySamplesPassed) {
// A valid nonce was found
readBackResult()
} else {
+ console.log(`not found (${performance.now() - start} ms)`)
// No valid nonce found, start the next draw call
requestAnimationFrame(draw)
}
} else {
+ console.log(`not ready (${performance.now() - start} ms)`)
// Query result not yet available, check again in the next frame
requestAnimationFrame(checkQueryResult)
}
// Check the pixels for any success
for (let i = 0; i < Pow.#pixels.length; i += 4) {
if (Pow.#pixels[i] !== 0) {
+ console.log(`FOUND (${performance.now() - start} ms)`)
const hex = Pow.#hexify(work.subarray(4, 8)) + Pow.#hexify([
Pow.#pixels[i + 2],
Pow.#pixels[i + 3],